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Abstract

We showcase an attack in which an autonomous hu-
manoid robot is trained to execute touch gestures that match
those of a target user. Different from past work which ad-
dressed a similar problem using a Lego robot, we harness
the significant processing power and unique motoric capa-
bilities of the autonomous humanoid robot to implement an
attack that: (1) executes touch gestures with high preci-
sion, (2) is easily adapted to execute gestures on different
touch screen devices, and (3) requires minimal human in-
volvement. Relative to the traditional zero-effort impostor
attacks, we show, based on a dataset of 26 users, that our at-
tack significantly degrades the performance of touch-based
authentication systems. In addition to the paper highlight-
ing the threat that sophisticated adversaries pose to touch-
based authentication systems, our robotic attack design pro-
vides a blueprint for much needed impostor testing mech-
anisms that simulate algorithmic (or sophisticated) adver-
saries against touch-based authentication systems.

1. Introduction
The past few years have seen a surge in interest in sensor-

driven user authentication on smart phones. One of the most
studied sensors has been the touch sensor, with researchers
showcasing a wide range of mechanisms by which it can
be leveraged to authenticate users based on patterns seen
in their touch gestures (e.g., see [9][14][8][13]). Research
on this problem has however been lopsided. While there
is a huge volume of literature on how different authentica-
tion approaches work on touch biometrics data, there is sur-
prisingly very limited research on the kinds of sophisticated
(e.g., algorithmic) attacks that these systems could face if
widely deployed. Without deep insights into the implemen-
tation dynamics and potential impacts of attacks that these
systems could face in the wild, it is very difficult for re-
searchers to design systems that can stand firm in the wake
of adversity.

To our knowledge the only work to have demonstrated
a sophisticated attack on touch-based authentication to date

was our work in [15] where a Lego robot was used to mimic
human touch gestures. That work however left several crit-
ical unanswered questions, two of which are briefly dis-
cussed next:

(1) Attack Design Limitations: With the simplicity of the
attack being one of the core aims of the attack in [15], the
paper used a very simple robotic device, and made several
design choices aimed to simplify the execution of the at-
tack. Partly due to the use of a robot with limited capabil-
ities and partly due to the deliberate simplification of the
design, the attack in [15] made significant compromises on
the precision of execution of touch strokes. Further, the at-
tack very heavily relied on the assumption that the Android
OS records touch gestures using a very imprecise sampling
resolution, was significantly limited in the shapes of ges-
tures that could be executed and had components of it that
required significant human involvement. As we discuss in
Section 2.1, these issues leave behind a plethora of ques-
tions, many of which are addressed by the attack implemen-
tation in this work.

(2) Attack Performance Evaluation: Another question
facing the attack in [15] regards the methodology used to
evaluate the attack. Specifically, to demonstrate the impact
of the robotic attack on the continuous touch-based authen-
tication system, the paper solely used the traditional error
metrics (e.g., False Acceptance Rate (FAR), Equal Error
Rate (EER), etc.), demonstrating that the FAR (and hence
the EER) seen during the robotic attack was higher than that
seen when non-robotic impostors attacked the system. The
challenge with using measures such as the EER on their
own when characterizing the performance of a continuous
authentication biometric system is that they do not convey
any information about the temporal distribution of errors
[7][16].

As an illustrating example of why this would be a prob-
lem, consider a robot that attains a given FAR over a ses-
sion of touch gesture execution on the smart phone. With-
out any information on when the robot encounters failed
authentication attempts during this session, it is very diffi-
cult to fully asses the level of threat that the robot poses to
the system. If for instance the robot encounters consecu-



tive failed authentication attempts (i.e., bursts of rejections)
during a given time window, it is very likely that the sys-
tem will raise an alarm and lock out the robot. On the other
hand if the robot has failed authentication attempts widely
spread out, it is possible that the robot could have continued
access to the system, since genuine users themselves also
have occasional failed authentication attempts.

With interest in this area growing fast and federal agen-
cies such as DARPA, AFRL and DHS working towards the
development of sensor-driven smart phone authentication
solutions (see relevant sections of recent proposal solici-
tations [1][3][2]), the deficiencies noted above in (1) and
(2) highlight the need for a robotic impostor testing design
for touch based authentication systems that not only imple-
ments touch strokes with high precision, but is also auto-
mated enough to be feasible for the implementation of large
numbers of impostor tests on different kinds of devices with
minimal human involvement. The work in this paper repre-
sents the first steps towards this end. In particular the paper
makes the following contributions to the field:

1. We use an autonomous humanoid robot to design and
implement an attack that mimics the human execution
of touch gestures on a smart phone. Harnessing the
significant processing power and unique motoric capa-
bilities (relative to the Lego used in [15]) of the robot,
we demonstrate how the robot can learn a given swip-
ing behavior from empirical data and execute strokes
that very closely match those of a human.

2. To rigorously evaluate the impact of the attack on the
authentication system, we go beyond the traditional
EER metric and additionally study the temporal distri-
bution of errors in order to get insights into the robot’s
ability to be continuously authenticated by the system.

The rest of the paper is organized as follows: In Section
2 we discuss related work. In Section 3 we describe our data
collection experiments and feature extraction approach. In
Section 4 we discuss the design of the attack and present
our attack performance evaluation in Section 5. We finally
make our conclusions in Section 6.

2. Related Work

2.1. Robotic Attacks

The most related paper to this study is our work in [15].
In that paper, we showed a Lego robot to execute touch ges-
tures that increased the EER of the touch-based authentica-
tion system relative to when humans attacked the system.
While that work demonstrated that a robotic device could
execute touch strokes on the phone, there are several rea-
sons as to why the Lego attack would not suffice as the

robotic attack model that could be adopted for the burgeon-
ing domain of touch-based authentication. Below, we dis-
cuss some of these reasons:

Ease of attack adaptation to different devices: A Lego
robot basically consists of a set of pieces that are combined
together into a structure that can be programmed to under-
take a given task. In this case (i.e., in [15]), the pieces were
combined to execute touch strokes on a phone placed hori-
zontally on the ground. If one were to launch a similar at-
tack on a laptop that has a touch screen, they would have to
destroy the robot’s structure, rebuild it to match the physical
orientation and dimensions of the new device (e.g., a laptop
would have a vertical or close-to-vertical screen which is
much wider than that of a phone) and finally write new code
that can run the motors in accordance with the new physical
configuration. For our autonomous humanoid robot (i.e.,
the NAO H25 Evolution [5]) on the other hand, all these
changes can be made by only tweaking the code since its
mechanical framework is already shaped similarly to a hu-
man.

Precision of gesture execution: The attack in [15] exe-
cuted zig-zag strokes due to the limited capabilities of the
Lego. The Android system was “fooled” to “believe” that
the zig-zag strokes were near-smooth curves (like those of
a human) because it only sampled a subset of the points on
the zig-zag path. Clearly if touch-based authentication got
widely deployed, the default Android sampling rate would
easily be increased to detect the true shape of the gestures.
Our gesture execution mimics the human hand movement
and thus executes gestures that are as precise as those of a
human.

Ability to execute arbitrary gestures: By making trivial
changes to our algorithms, our attack can be set to exe-
cute touch gestures with different properties (e.g., shapes,
dimensions, etc.). This again naturally follows from a hu-
manoid robot having joints that are designed to very closely
match those of a human. For a Lego robot to execute ges-
tures with shapes different from those in [15], a completely
new physical structure would have to be built.

Attack performance evaluation: Aspects of the perfor-
mance evaluation method in [15] made it challenging to
asses the full impact of the robotic attack presented in [15]
(details of this challenge already discussed in Section 1).

These factors, among others cement the need for a more
rigorous robotic impostor testing approach for touch-based
authentication systems, which in turn motivates this work.

2.2. Touch-based Authentication

The other stream of related papers to our study is that of
works which developed mechanisms that continuously au-
thenticate users based on the gestures they execute on the
touch screen (e.g., see [9][14][8]). One thing that is com-
mon between all these works is that performance evaluation



is based on the assumption of impostors who make no effort
to forge a given swiping pattern (i.e., zero-effort impostors),
which in turn is the major factor that puts these works apart
from our paper. We do not discuss details of the authenti-
cation techniques used in these papers due to space limita-
tions.

3. Data Collection and Feature Extraction
After getting IRB approval from out University, we col-

lected data from 33 users. The data collection experiment
involved users responding to a series of multiple choice
questions on the smart phone. Answers to these questions
were available on the same page on which the questions
were presented, however, users had to scroll back and forth
to find these answers before entering them. This back and
forth swiping generated the touch strokes (or swipes) that
we used for our authentication investigations. Each user
participated in two different data collection exercises on two
different days, with data from one day used for classifier
training and data from the other day used for testing.

To extract features from a user’s touch strokes, we used
the sliding window mechanism like has been done in past
work (e.g., see [9][14]). Each window comprised 10 strokes
from which 28 features were extracted per stroke. The fea-
tures were computed as follows: From each of the veloc-
ity, pressure, area (between finger and screen) and acceler-
ation measurements at different points along a stroke, we
calculated the first, second and third quartile and the mean
and standard deviation, giving a total of 20 features (i.e., 5
statistical measures × 4 categories of readings). To these
20 features we added the start and end coordinates of each
stroke (a total of 4 features since each X and Y value is con-
sidered a separate feature) and the following four features:
(1) the angle between the end-to-end line joining the ends of
a stroke and the horizontal, (2) the length of the end-to-end
line, (3) the sum of distances between consecutive touch
points, and, (4) total time to execute a stroke. From the
ten strokes comprising a sliding window, component-wise
means of the ten 28-dimensional feature vectors were com-
puted to produce a single 28-dimensional vector. Note that
with the sliding window mechanism, a user who executed n
strokes had n− 9 feature vectors in total.

4. Attack Design
4.1. Threat Model

Our interest is the question of whether or how a hu-
manoid robot could be used to execute touch strokes that
match those of a human, also referred to as the victim. Our
attack design thus assumes the scenario of an adversary who
gets access to a user’s swiping samples (or template), and
then uses this information to train a robot to mimic the touch
strokes. This assumption of an attacker who steals biomet-

ric samples and later uses them as input to design and launch
attacks against the victim is quite standard in threat models
used for the performance evaluation of behavioral biomet-
rics installations (e.g., see [10]).

4.1.1 Threat Examples

With a motive to steal the victim’s phone at a later time, the
attacker could in practice get access to the intended victim’s
swiping data through social engineering, i.e., tricking the
unsuspecting victim to swipe on the attacker’s phone which
has malware installed to record the victim’s touch patterns.
This trickery could for instance be done by asking the (in-
tended) victim to browse some images or read some text on
the attacker’s phone.

The other way in which swiping samples could be stolen
is where the victim’s phone itself has malware that logs in-
formation and sends it to servers controlled by the adver-
sary (e.g., malware similar to that reported on Sony Xperia
phones recently [6]). Samples stolen in this way from high
value targets could then later be marketed in underground
hackers’ networks. Like was assumed in the earlier cited
Lego attack [15], the attacker’s aim in both cases will be
to read sensitive private information on a victim’s phone
whose only active layer of defense is the touch-based au-
thentication system.

There is no doubt that the manures described above
would require significant commitment from the adversary.
Regardless of the attack implementation challenges how-
ever, the question of how or whether a sophisticated adver-
sary (e.g., one using a robot) can mimic a given user’s swip-
ing pattern to defeat authentication mechanisms remains
very critical for the security evaluation of the technology.
Our attack tackles this problem by providing a blueprint for
the emulation of robotic adversaries against touch based au-
thentication.

4.2. Learning a User’s Swiping Behavior

During a swiping session, a user may execute strokes
having a wide range of properties (e.g., with regard to
length, speed, etc.) depending on the exact task being un-
dertaken at the point in time. During the attack, the robot
will need to be aware of these stroke categorizations so
that it can generate a mix of strokes that map to all stroke
families manifested in a user’s swiping behavior. We ad-
dress this challenge as follows: First, we use clustering to
discover the different stroke families in a user’s swiping
data. From data stolen from the victim, we first created
feature vectors from each stroke (i.e., approach to feature
vector computation was described in Section 3), and then
run the X-means algorithm [11] to categorize the feature
vectors into clusters. The advantage of X-means over other
partition-based algorithms such as K-means is that the num-



ber of clusters (which we don’t know) is not required as an
input. The method estimates the number of clusters by find-
ing the cluster composition (i.e., numbers of clusters and
centers of clusters) that optimizes the Bayesian Information
Criterion. We used the default settings in R [12] to imple-
ment the algorithm on our data.

For a good number of users, the clustering process gen-
erated large numbers of clusters, some of which only con-
tained very few strokes. We only retained about 60% of
the clusters, ignoring the very small clusters as noise. As a
hypothetical example, assume a user for whom we retained
3 clusters whose sizes were in the ratio 1:2:3. The strokes
to be executed by our robot to attack this user are such that
representative strokes from each of the clusters get executed
while keeping the ratio of cluster sizes in mind. For each
stroke that is to be executed, the robot probabilistically se-
lects a cluster (probability determined by the above men-
tioned ratio) and then creates a stroke matching the average
properties of the strokes in the cluster. The average proper-
ties referred to here are the mean values of the velocity and
the start and end coordinates of the strokes within a cluster.
Other properties such as pressure and area are controlled
through the nature and placement of the stylus being used
to swipe (details in Section 4.3).

Given a cluster for which the mean value of velocity
across all strokes is v, each of the strokes forged for this
cluster will have a velocity v + β.σ, where β is a random
constant between -0.5 and 0.5 and σ is the standard devia-
tion of the velocities of the strokes in the cluster. The same
approach is used for all the other features, with the random
constant being used to ensure that two strokes from the same
cluster are not exactly the same.

4.3. Executing a Robotic Touch Gesture

Given the mean properties of a stroke as described above,
Algorithm 1 illustrates how the robot executes the stroke
(which is represented as the input argument R). The first
step is to convert the pixel coordinates of the end points
and start points of the stroke into what we term as “box
locations” on the phone screen. This is done in steps #2
and #3 where R[InitX] and R[FinalX] are the initial and
final pixel X coordinates on the phone (Y coordinates de-
fined similarly), and Xi and Xf are the so called box lo-
cations mapping to these coordinates. Figure 1 illustrates
our notion of box locations. The figure is a phone screen
on which a grid has been superimposed. Because the robot
finger (which is actually a stylus — see Figure 2) cannot
precisely pinpoint an individual pixel value, we use the grid
(or boxes) to group together a set of neighboring pixels. The
robot’s system thus sees the phone screen as if it is the grid
mentioned above, and, given a pair of coordinates from a
user’s strokes, it interprets this input as the box location
mapping to those pixel coordinates.

ALGORITHM 1: How NAO robot executes a touch
stroke on phone screen

1 Function MakeSwipe(R)
2 (Xi,Yi)← GetInitBoxCoords(R[InitX],

R[InitY);
3 (Xf ,Yf )← GetFinalBoxCoords(R[FinalX],

R[Final]);
4 ;
5 Anglesi ← (RSPAngle[Xi][Yi],

RSRAngle[Xi][Yi], RERAngle[Xi][Yi],
RWYAngle[Xi][Yi], REYAngle[Xi][Yi]);

6 ;
7 Anglesf ← (RSPAngle[Xf ][Yf ],

RSRAngle[Xf ][Yf ], RERAngle[Xf ][Yf ],
RWYAngle[Xf ][Yf ], REYAngle[Xf ][Yf ]);

8 ;
9 MoveHandAbove(InitAngles);

10 Swipe(Anglesi, Anglesf , Velocity);
11 MoveHandAbove(FinalAngles);

12 end

 v
(0, 0) 
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(0,0)
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Figure 1. The NAO robot’s view of the phone screen. The robot
sees the phone as if it is an 18 × 9 grid (not shown to exact di-
mensions here), and interprets each pixel coordinate in terms of
the cell to which it belongs. An example of a robotic touch stroke
is shown on the grid. v is the mean velocity along the stroke.

To create a touch stroke between two box locations cor-
responding to the pixel coordinates at the ends of a stroke,
we programmed 5 different motors in the robot’s hand. Fig-
ure 3 shows the locations and directions of movement of
these motors. The motors at the extreme right control the
Right Shoulder Roll (RSR) and Right Shoulder Pitch (RSP)
while the motors in the middle control the Right Elbow Roll
(RER) and Right Elbow Yaw (REY). At the wrist we only
controlled the Right Wrist Yaw (RWY). For more details on
the motor specifications, the reader is referred to [4].

In a preliminary set of calibration experiments, we found
the 5 motor angles corresponding to each box location (Fig-
ure 1) and the motor speeds needed to produce a range of
swiping velocities on the screen. During the attack there-
fore, the robot did the reverse process — i.e., it mapped the



 

Stylus 

Sellotape 

Figure 2. NAO robot swiping on the phone. The sellotape holds
the phone in position during swiping. Also, the stylus is firmly
held in the robot’s fingers with the aid of sellotape.
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Figure 3. Illustrating the directions of rotation of the five motors
that were programmed to create a touch stroke

swipe velocities (extracted from a user’s data) back to motor
speeds and the box locations (generated in lines #2 and #3
of Algorithm 1) back to motor angle values, enabling it to
navigate to the required positions on the grid at the required
velocity. Lines #5 and #7 of Algorithm 1 respectively show
how the robot maps the start and end points of a stroke to
the motor angles (Anglesi andAnglesf ) needed to perform
the required motion. In line #9 the robot moves the stylus
to the initial position just above the phone screen, and ex-
ecutes the swipe action between the initial and final angles
in line # 10. In line #11 the stylus is moved off the phone,
ready for execution of the next touch stroke.

We used a cosmonaut stylus as it registered the required
touch area of about 0.15 units. We (programmatically) lo-
cated the robot’s hand (or stylus) relative to the phone in
such a way to get a pressure that ranged between 0.4 and
0.6 units during swiping. These configurations were again
set based on a preliminary set of calibration experiments. In
[15] we used the same values of area and pressure since they
were representative of the average behavior across the pop-

ulation. Between the two end points of a stroke, the inter-
mediate motor angles were set to cause each stroke to have
a very slight curvature (i.e., deviating very slightly from the
straight line) since this was the commonly observed behav-
ior across the population.

5. Performance Evaluation
In this section we evaluate how the robot performed at

forging/copying users’ touch gestures. We also compare the
performance of the robotic attack with that of a zero-effort
attack (described in Section 2.2) so as to give insights into
how our attack compares with the state-of-the-art perfor-
mance evaluation methods (which are centered around the
zero-effort attack).

5.1. Training and Testing Process

For each user, data from one session was used for classi-
fier training while data from a second session was used for
testing (review data collection Sessions in Section 3). Each
user’s training template was built based on 80 touch strokes.
Fixing this strokes requirement helped us prevent biases in
the classification performance that might have arisen out
of users having varying extents of training. Since only 26
of the original set of 33 users met this 80 strokes require-
ment in the testing set, we focused our performance evalua-
tions on this sub-set of users. To compare the impact of the
robotic attack with that of attacks launched by humans, we
carried out two types of impostor attacks : a robotic attack
in which 100 samples generated by the robot were used to
attack each user’s template, and a human impostor attack in
which 100 samples were drawn randomly from users other
than the particular user under investigation.

For each form of impostor attack we also carried out
the so called “genuine attack” (i.e., the user’s own sam-
ples being used to attack the user’s template), so as to be
able to generate a Detection-Error Trade-off (DET) curve
for each user. The genuine attack was also based on 100
samples from the genuine user. In the following subsec-
tion we compare the mean Equal Error Rates (EERs) ob-
tained when human impostors were used to those obtained
when robotic impostors were used. Classification was done
based on 3 well-known verifiers, namely the Support Vector
Machine (SVM), Multilayer perceptron (MLP) and the K-
Nearest Neighbors classifier (K-NN). We used k=5 for the
latter classifier and default settings in R [12] for all other
classifiers.

5.2. Mean Error Rates

Figure 1 shows the mean EERs across the population ob-
tained under the robotic attack compared side-by-side with
those obtained under the human attack. For all three classi-
fiers, observe that the mean EER (µEER) under the robotic
attack was higher than that under the human attack. The



Table 1. Comparing the mean EERs obtained when the robotic
attack was launched to those obtained when human impostors at-
tacked the system

Classifier Human Attack Robotic Attack % Increase
µEER σEER µEER σEER µEER σEER

SVM 0.081 0.112 0.363 0.273 348.0 144.4
MLP 0.101 0.123 0.268 0.207 165.8 67.8
KNN 0.167 0.183 0.322 0.265 92.9 44.8

same applies to the standard deviation (σEER) of the EERs
which was higher under the robotic attack than under the
human attack. The last two columns express these incre-
ments as percentages, showing that µEER and σEER in-
creased by up to 348% and 144% in the extreme case. In
general, the heightened EERs indicate that the system saw
more cases of impostor access during the robotic attack,
while the high standard deviations indicate that the system
became more unreliable (unpredictable) as certain users had
much higher EERs than the rest of the users.
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Figure 4. CDF of the change in EER per user due to the attack.

Figure 4 gives some insights into the impact of the at-
tack on each user. For each user we subtracted the EER
obtained during the zero-effort attack from that obtained
during the robotic attack and plotted the CDF of these dif-
ferences. A negative value of this difference indicates that
the user had a lower EER under the robotic attack (and thus
had a template more resistant to the robotic attack than the
zero-effort attack) while a positive value indicates that the
user in question was more susceptible to the robotic attack
than the zero-effort attack. Figure 4 shows that across the 3
verification algorithms, between 80% and 65% of the pop-
ulation performed worse under the robotic attack (or had
positive differences). A possible reason as to why some
users had lower EERs under the robotic attack is that some
of the forged variables that were based on population statis-
tics and not each user’s own behavior (e.g., see pressure and
area in Section 4.3) may not have matched well with certain
users’ templates. In general however, Figure 4 shows that
the robotic attack achieves great success at forging users’
swiping behavior.

5.3. Temporal Distribution of False Acceptances

As already argued in Sections 1 and 2, the EER-based
evaluation presented in the previous section portrays an in-
complete picture of the impact of the attacks because it does
not provide any information on when classification errors
occur. In this section we compare information on when
classification errors occurred during the robotic and human
attacks. We particularly focus on false acceptance errors,
since we are interested in studying the success of the at-
tack (i.e., the cases when the system misclassified the attack
samples as legitimate samples). This comparison should
give some measure of the likelihood that the attacker (hu-
man or robotic) can continuously authenticate on the sys-
tem.

Assume an attacker who makes n authentication at-
tempts on a swiping-based authentication system and suc-
cessfully authenticates (i.e., registers a false acceptance)
during the ith attempt. If the next successful authentication
attempt during this swiping session is the jth attempt, then
we defineDF = j−i as the distance between adjacent false
acceptances. If DF =1, this means that two consecutive au-
thentication attempts made by the attacker were successful.
If DF is large, this means a good number of attempts by
the attacker are rejected before a given attempt gets falsely
accepted.

In general, the lower the value of DF , the higher the
likelihood that the attacker will successfully continuously
authenticate against the user’s biometric profile. If DF is
large, there is a good chance that an alarm will be triggered
during the many failed authentication attempts registered in
close proximity to each other. For each user and each form
of attack, we compute the mean value of DF (denoted as
D̄F ) to get some indication of the attacker’s likelihood to
continuously authenticate on the system. Table 2 summa-
rizes the findings from this analysis. We bin D̄F in buckets
of size 2 and count the percentage of users falling in each
bin for each type of attack and verification algorithm (i.e.,
each of the six right-most columns in the table add up to
100%).

Take the case of 0< D̄F ≤2 for instance. For all veri-
fication algorithms, Table 2 shows that 0% of the users had
D̄F in this range for the human attack. This is in compari-
son to between 19.2% and 34.6% of the users for the worst
and best performing verifiers respectively. A similar trend
is seen with the interval 2< D̄F ≤4, where again larger
percentages of users are seen for the robotic attack than for
the human attack for all verification algorithms. For higher
values of D̄F a reverse trend is seen, as more users are seen
under the human attack than under the robotic attack. These
results confirm that the robotic attack had a much higher
chance of maintaining a sustained continuous authentica-
tion session than the zero-effort impostor attack.



Table 2. Percentage of users for each range of D̄F for different classifiers and impostor attack types.

D̄F
KNN MLP SVM

Human Robot Human Robot Human Robot
0< D̄F ≤2 0.0% 34.6% 0.0% 19.2% 0.0% 23.1%
2< D̄F ≤4 3.8% 30.8% 3.8% 19.2% 0.0% 19.2%
4< D̄F ≤6 11.5% 3.8% 7.7% 3.8% 11.5% 11.5%
6< D̄F ≤8 15.4% 3.8% 7.7% 11.5% 7.7% 11.5%

>8 69.2% 26.9% 80.7% 46.2% 80.7% 34.6%

6. Conclusions

In this paper we have presented an attack in which a hu-
manoid robot mimics the touch gestures executed by hu-
mans. Using a combination of the traditional error metrics
and a distance measure that captures the robot’s likelihood
to continuously authenticate, we have showed the robotic
attack to achieve significant success at forging users’ touch
gestures. The paper does not only highlight the threat
that robots pose to touch-based authentication systems, but
also takes steps towards presenting a general robotic attack
framework which simulates sophisticated adversaries that
touch-based authentication systems may face in practice.
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